Introduction to Neural Networks
What are Neural Networks
What is current status in applying neural networks
Neural Networks vs regression models
Supervised and Unsupervised learning
Overview of packages available
nnet, neuralnet and others
Differences between packages and itls limitations
Visualizing neural networks
Applying Neural Networks
Concept of neurons and neural networks
A simplified model of the brain
Opportunities neuron
XOR problem and the nature of the distribution of values
The polymorphic nature of the sigmoidal
Other functions activated
Construction of neural networks
Concept of neurons connect
Neural network as nodes
Building a network
Neurons
Layers
Scales
Input and output data
Range 0 to 1
Normalization
Learning Neural Networks
Backward Propagation
Steps propagation
Network training algorithms
range of application
Estimation
Problems with the possibility of approximation by
Examples
OCR and image pattern recognition
Other applications
Implementing a neural network modeling job predicting stock prices of listed
|